
Multi-Party Quantum Communication Complexity
with Routed Messages

Seiichiro Tani∗ Masaki Nakanishi† Shigeru Yamashita‡

Abstract

This paper describes a general quantum lower bounding technique for the communication complexity
of a function that depends on the inputs given to two parties connected via paths, which may be shared with
other parties, on a network of any topology. The technique can also be employed to obtain a lower-bound
of the quantum communication complexity of some functions that depend on the inputs distributed over
all parties on the network. As a typical application, we apply our technique to the distinctness problem of
deciding whether there are a pair of parties with identical inputs, on a k-party ring; almost matching upper
bounds are also given.

1 Introduction
Studying communication complexity has been one of the central issues in computer science since its intro-

duction by Yao [19]. Not only it is interesting in its own right, but it also has many applications such as
analyzing VLSI circuit designs, data structures and networks (See the book [13] for more details).

In the simplest case where there are two parties connected to each other by a communication channel,
two parties, say, Alice and Bob, get inputs x ∈ {0, 1}n and y ∈ {0, 1}n, respectively, and compute f (x, y) :
{0, 1}n × {0, 1}n → {0, 1} cooperatively by exchanging messages. For example, Alice first performs local
computation depending on her input and sends a message to Bob. He then does some local computation
depending on his input and the received message, and sends a message back to Alice. This message exchange
is repeated until Alice or Bob outputs the value of f . For any protocol P that computes f , the cost of P is the
number of communication bits on the worst-case input (x, y). The communication complexity of f , D(f), is
the minimum cost of P, over all deterministic protocols P that compute f . Protocol P may be randomized,
i.e., Alice and Bob can access random strings rA and rB, respectively, in addition to the inputs they receive.
The communication complexity of a randomized protocol that computes f is the number of communication
bits in the worst-case over all inputs and all random strings. The communication complexity Rε(f) of f for
error probability ε is the minimum communication complexity over all randomized protocols that compute
f with error probability at most ε for every input. If ε is bounded by a certain constant that is less than 1/2,
we call it bounded error. Without loss of generality, ε is assumed to be 1/3 in the bounded error setting
unless it is explicitly set to a different value. There is another randomized setting: a randomized protocol
that never outputs an incorrect answer, but may give up with probability at most ε. We call such a protocol a
Las Vegas protocol or a zero-error protocol. The communication complexity of f in the zero-error setting is
∗NTT Communication Science Labs., NTT Corporation. tani@theory.brl.ntt.co.jp
†Graduate School of Information Science, Nara Institute of Science and Technology. m-naka@is.naist.jp
‡Graduate School of Information Science, Nara Institute of Science and Technology. ger@is.naist.jp

1

denoted by R0,ε(f). Furthermore, there is another way of giving random strings to Alice and Bob: they are
allowed to access public coins (or a common random string). Formally, the output of protocol P depends
on the inputs and common random string r. The public-coin versions of Rε(f) and R0,ε(f) are denoted by
Rpub
ε (f) and Rpub

0,ε (f), respectively.
Quantum communication complexity, introduced by Yao [20], is the quantum counterpart of (classical)

communication complexity. Parties are allowed to perform quantum computation and send/receive quantum
bits (or qubits). The communication complexities, QE(f), Qε(f) and Q0,ε(f) are defined as the quantum
counterparts of D(f), Rε(f) and R0,ε(f), respectively. In particular, the quantum counterpart of deterministic
computation (protocol, algorithm, etc.) is called exact computation (protocol, algorithm, etc.); it runs in
bounded time and always outputs the correct answer.

It is known that there are functions for which non-constant gaps exist between quantum and classical
communication complexity. For exact computation, Buhrman et al. [5] proved that for a certain promise
version of the equality function EQ′n, QE(EQ′n) = O(log n) while D(EQ′n) ∈ Ω(n) [7]. In the bounded-
error case, Raz [16] showed a promise problem that has an exponential gap between quantum and classical
settings, i.e., Q1/3(f) = O(log n) and R1/3(f) = Ω(n1/4/ log n). As for total functions, the largest known
gap is quadratic: Q1/3(DISJn) = Θ(

√
n) [1, 17] and R1/3(DISJn) = Ω(n) [10], where DISJn is the 2n-bit

disjoint function, i.e.,
∧n

i=1(xiyi). Exponential gaps have been demonstrated for restricted or other models;
examples include the one-way bounded-error model [2, 8] and the bounded-error simultaneous message-
passing model [6].

As mentioned above, there have been a lot of researches on the standard two-party communication model
for quantum communication complexity. On the other hand, unlike the classical case, there is almost no
research that considers more general (and more natural when we consider the Internet) model, i.e., distributed
quantum computing over multiple parties on a network whose underlying graph is not necessarily complete.
In this setting, a certain pair of parties may have to communicate with each other via some other parties; it
seems difficult to directly apply known techniques for the standard two-party communication model.

Our contribution. We first show that the quantum communication complexity Q1/3(f) of f (x, y) in the
standard two party case implies a non-trivial lower bound for the total quantum communication complexity
over all links in a network G (consisting of many parties) for computing f (x, y) (denoted by QG

1/3(f) here-
after) when x and y are given as n-bit string input to two parties, PA and PB, on G. For any protocol with
which PA and PB compute f (x, y) on a network G, we divide all parties on G into s disjoint layers (with
some properties which will be described in our proof), where w is the maximum number of links between
two adjacent layers. Then, we show that

QG
1/3(f) = Ω(s(Q1/3(f) − log min{n, s})/logw).

Note that s and w may be chosen appropriately depending on a problem in order to get a good lower bound.
Our main idea to derive the above lower bound is to extend the classical deterministic lower bound

technique in [18] to the quantum case. To do so, we introduce a new notion “quantum protocol with classical
public coins,” and then we modify the classical lower bound technique in a careful combination with the
quantum version of the public-to-private randomness conversion technique. We also prove similar results in
the zero-error setting.

We then apply the lower bound technique to lower-bound the quantum communication complexity of
computing the distinctness problem on a k-party ring with bounded-error probability: the problem is deciding
whether there are a pair of parties who get identical inputs in {0, . . . , L − 1} on a k-party ring, for which we
derive lower bound Ω(k(

√
k + log log L)). We also give two quantum protocols for the problem. The first

algorithm gives almost the matching upper bound: O(k(
√

k log k + log log L)). The second algorithm has
better upper bound than the first if L < k(log k)2: O(k

√
L), which is optimal in the case of L = O(k). As far

2

as we know, this is the first non-trivial result of almost tight bounds of multi-party quantum communication
complexity on a network whose underlying graph is not complete.

2 Basic Tools
2.1 Converting Public Coins into Private Coins
In what follows, we assume that communication is quantum, but parties share no prior-entanglement. If a
quantum protocol allows parties to access an arbitrary number of classical public coins, it is called a quantum
protocol with classical public coins. Qpub

ε (f) is defined as the minimum communication complexity over all
quantum protocols with classical public coins that compute f with error probability at most ε.

As in the classical case [15], we would like to be able to replace many public coins with a small number
of communication bits in the case of quantum protocols with classical public coins. Although it looks very
similar to the classical case (also mentioned in [11]), the proof needs to be modified to handle quantum
errors. The next proposition is used in the proof.

Proposition 1 (Hoeffding inequality (e.g., [13])) Suppose that X1, . . . , Xt are t independent random vari-
ables with identical probability distribution over the real interval [a, b] that have expected value p. Then

Pr
[∣∣∣∣∣∣

∑t
i=1 Xi

t
− p
∣∣∣∣∣∣ ≥ δ
]
≤ 2e−

2tδ2
b−a .

Lemma 1 Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. For every positive real δ and ε (δ + ε < 1/2) ,
any ε-error quantum protocol with classical public coins can be transformed into an (ε + δ)-error quantum
protocol without classical public coins by using additional *log n + 2 log 1/δ+-bit communication.

Proof Suppose that we have any ε-error quantum protocol with classical public coins, P, that computes f ,
and assume that P chooses a random string according to probability distribution Π over all possible random
strings. Let P(x, y, r) be the event that P is given input (x, y) and chooses particular string r as the random
string. The error probability of P under event P(x, y, r), i.e., the probability that the output of P under
P(x, y, r) is not equal to f (x, y), is denoted by Er[P(x, y, r)].

We will show that there exist t strings r1, . . . , rt such that, for every input (x, y), the expected value
of Er[P(x, y, r)] for random r chosen uniformly from the t strings is at most ε + δ . Therefore, if Alice
randomly chooses one of the t strings and sends the *log t+ bits specifying the chosen string to Bob, then
they can compute f with error probability at most ε + δ. The lemma follows.

Choose t = *n/δ2+ strings r1, . . . , rt according to the probability distribution Π of common random
strings. Since 0 ≤ Er[P(x, y, ri)] ≤ 1, we can show by the Hoeffding inequality for fixed input (x, y) that

Prr1,...,rt







1
t

t∑

i=1

Er[P(x, y, ri)] − ε

 > δ


 ≤ 2e−2δ2t.

If we set t to *n/δ2+, 2e−2δ2t is smaller than 2−2n. Therefore, the probability that, for some input (x, y),
1
t
∑t

i=1 Er[P(x, y, ri)] > ε + δ is smaller than 2−2n · 22n = 1 when r1, . . . , rt is randomly chosen. This implies
that there exist r1, . . . , rt such that for every input (x, y), 1

t
∑t

i=1 Er[P(x, y, ri)] ≤ ε + δ. !

This lemma can be easily generalized to the case of k parties, in which every party i gets xi ∈ {0, 1}n as
input and they have to compute function f depending on xi’s.

3

Lemma 2 Let f : {0, 1}nk → {0, 1} be a function. For every positive real δ and ε (δ + ε < 1/2) , any ε-error
quantum protocol with classical public coins that computes f on k parties can be transformed into an (ε+δ)-
error quantum protocol without classical public coins, by using additional communication to broadcast a
*log(kn) + 2 log 1/δ+-bit message.

Proof Follow the same argument with t = *kn/(2δ2)+. !

In the case of a ring, the additional communication is just k*log(kn) + 2 log 1/δ+-bits, since broadcasting
involves passing the message around the ring.

For zero-error quantum protocols, we can obtain a similar result.

Lemma 3 Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. For every positive real δ and ε (δ + ε < 1), any
zero-error quantum protocol with classical public coins for computing f that may give up with probability
at most ε can be transformed into a zero-error quantum protocol without public coins that may give up with
probability at most (ε + δ), by using additional *log n + 2 log 1/δ+-bit communication.

The proof is realized by considering the deviation of the average give-up probability over t random strings
from the average give-up probability over all random strings.

2.2 Quantum amplitude amplification
We quote the quantum amplitude amplification theorem, which we will use in our proofs.

Theorem 4 ([4]) Let A be any quantum algorithm that uses no measurements, and let χ : Z → {0, 1} be
any Boolean function. Given the initial success probability a > 0 ofA, Qm(A, χ)A|0〉 gives a good solution
with probability sin2((2m + 1)Arcsin

√
a), where Q(A, χ) = −AF0A−1Fχ. Operator Fχ transforms x into

−|x〉 if χ(x) = 1, and leaves x unchanged otherwise; F0 transforms |x〉 into −|x〉 if x = 0 . . . 0, and leaves |x〉
unchanged otherwise.

3 General Lower Bound
Now we describe our key theorem which lower-bounds the total quantum communication complexity over
all links of a network of any topology by using the ordinary quantum communication complexity of the two
party case.

Theorem 5 Suppose that n-bit strings x and y are given to two parties PA and PB, respectively, on network
G of any topology. Then suppose any partitioning of the network G into (s + 1) layers as in Figure 1 such
that the following conditions are satisfied:

1. every layer is a disjoint subset of the set of all parties in G,

2. the finrst layer has a unique member PA,

3. the (s + 1)st layer has a unique member PB,

4. no edge jumps over a layer, i.e., there is no link between a party in the i-th layer and a party in the
(i + j)−th layer for any 1 ≤ i < s and i + 1 < i + j ≤ s + 1,

5. w is the maximum number of links between two adjacent layers.

4

Let QG
ε (f) be the total quantum communication complexity over all links in G of computing a Boolean

function f (x, y) with error probability at most ε (0 ≤ ε < 1/2). Then, for any s and w that satisfy the above
conditions of the partitioning of G, QG

ε (f) is at least s
*logw+ times

max{δ1(Qε+δ1/2+δ2 (f) − *log(n/δ22)+), δ3(Qε+δ3/2(f) − *log s+)},

where 0 < δ1, δ2, δ3 < 1 such that ε + δ1/2 + δ2 and ε + δ3/2 are smaller than 1/2, and Qε(f) denotes the
quantum communication complexity of f (x, y) for error probability at most ε in the ordinary two party case
(where the two parties are directly connected by a quantum communication link).

Proof The proof is similar to that given for the classical deterministic setting in [18], but we need to make
a slight modification to it in order to handle bounded error setting.

Suppose that P be the best quantum protocol between PA and PB that computes f (x, y) on network G
with error probability at most ε. We then construct a quantum protocol with classical public coins between
two parties, P′A and P′B, that are directly connected to each other by simulating protocol P as follows: if the
value of the public coins is i ∈ {1, . . . , s}, the two parties, P′A and P′B, simulate the left and the right parts,
respectively, of the i-th and the (i + 1)-st layers.

Let qi be the number of communicated qubits between the i-th and the (i + 1)-st layers during the execu-
tion of protocol P, and let wi be the number of links between the i-th and the (i + 1)-st layers. It follows that
the necessary communication bits for P′A and P′B in the above simulation is at most qi*logwi+, since at most
*logwi+ bits are needed, when simulating each message exchanged between the i-th and the (i+ 1)-st layers,
to specify on which link among wi links the message is sent. The obtained protocol between P′A and P′B com-
putes f with error probability at most ε and with expected communication complexity (1/s

∑
i qi*logwi+).

To guarantee the worst case communication complexity, we modify this protocol so that if the amount
of communication exceeds 1/δ1 times (1/s

∑
i qi*logwi+) for 0 < δ1 < 1, it stops and randomly outputs 0

or 1. The probability of this event is at most δ1 by Markov’s inequality. On the condition that this event
occurs, the probability of outputting the wrong value is exactly 1/2. Thus, the modified protocol has error
probability at most ε + δ1/2. Hence, we have obtained an (ε + δ1/2)-error quantum protocol with classical
public coins, whose complexity is 1/(sδ1)

∑
i qi *logwi+ ≤ *logw+/(sδ1) · ∑i qi. The last equality is due to

wi ≤ w. This implies that Qpub
ε+δ1/2

(f) ≤ *logw+/(sδ1) · ∑i qi. Amount
∑

i qi is the total number of qubits
communicated by protocol P, QG

ε (f), which is lower-bounded by sδ1Qpub
ε+δ1/2

(f)/*logw+.
By applying Lemma 1 to Qpub

ε+δ1/2
(f), we have

QG
ε (f) ≥ sδ1(Qε+δ1/2+δ2 (f) − *log n + 2 log 1/δ2+)/*logw+.

There is a simpler way of deciding the boundary between P′A’s part and P′B’s part: P′A randomly chooses
one layer-boundary out of the s layer-boundaries and informs P′B of the chosen layer-boundary by sending a
*log s+-bit message. By an argument similar to the one stated above,

Qε+δ3/2(f) ≤ 1/(sδ3)
∑

i

qi *logwi+ + *log s+

≤ *logw+/(sδ3) ·
∑

i

qi + *log s+.

This implies that QG
ε (f) is lower-bounded by sδ3(Qε+δ3/2(f) − *log s+)/*logw+. !

Remark: To derive a good lower bound, we should be careful to partition a given network into layers so
that the values of w and s become appropriately small and large, respectively. However, for some graphs, w

5

PA PBx y
bits n

i 1+i2 1+s
wwi !

bits n

1 s

Figure 1: Network G that is partitioned into (s + 1)-layers.

may become exponentially large to s by any choice of layers. In such cases, our lower bound is trivial, i.e.,
essentially the same as the ordinary two party case. Since our lower bound can be applied to any network,
this may be inevitable; to find a good application (i.e., network structure) and find a good choice of layers
(i.e., w and s) are very important to utilize our lower bound. Indeed, we can derive a nice lower bound in the
following section.

If we set ε, δ1, δ2, δ3 to constants such that ε + δ1/2 + δ2 and ε + δ3 are at most some constant less than
1/2, then Qε(f), Qε+δ1/2+δ2 (f) and Qε+δ3/2(f) differ by at most constant multiplicative factors.

Corollary 6 Suppose that f , G, s and w are defined as above. Then, for constant 0 < ε < 1/2,

QG
ε (f) = Ω(s(Qε(f) − log min{n, s})/logw).

If function f is derived from some symmetric function g, we can obtain a more concrete lower bound.

Corollary 7 Suppose that G, s and w are defined as above, f (x, y) (x, y ∈ {0, 1}n) is of the form f (x, y) =
g(|x∧ y|) for any predicate g : {0, . . . , n} →{ 0, 1}. If l0(g) ∈ {0, 1, . . . , .n/2/} and l1(g) ∈ {0, 1, . . . , .n/2/} are
the smallest integers such that g(h) is constant for any integer h ∈ {l0(g), l0(g) + 1, . . . , n − l1(g)}. Then, the
total quantum communication complexity over all links of computing f (x, y) in the bounded error setting is

Ω(s(
√

nl0(g) + l1(g) − log min{n, s})/ logw).

Proof By Razborov’s lower bound Ω(
√

nl0(g) + l1(g)) for such a predicate as shown in [17]. !

For zero-error quantum protocols, we have a similar but slightly different result: δ1/2 and δ3/2 are
replaced by δ1 and δ3, since the protocol must give up if the amount of communication exceeds 1/δ1 (1/δ3)
times 1/s

∑
i qi*logwi+ in order to preserve the zero-error property.

Theorem 8 Define f , G, s and w as above. Let QG
0,ε(f) be the total quantum communication complexity

over all links in G of computing Boolean function f (x, y) with error probability 0 and give-up probability at
most ε (0 ≤ ε < 1). Then, QG

0,ε(f) is at least s
*logw+ times

max{δ1(Qε+δ1+δ2 (f) − *log(n/δ22)+), δ3(Qε+δ3 (f) − *log s+)},

where 0 < δ1, δ2, δ3 < 1 such that ε + δ1 + δ2 and ε + δ3 are smaller than 1, and Q0,ε(f) denotes the quantum
communication complexity of f (x, y) for error probability 0 but give-up probability at most ε in the ordinary
two party case.

The proof is given in B.

6

4 Application: Almost Tight Bound of Distinctness on a Ring
This section applies the lower bound theorem of the previous section to a distributed computing problem, the
distinctness problem, which emerges when checking whether the priorities of processors are totally ordered.
The distinctness problem DISTINCTG

k,L was first introduced by Tiwari [18] and is defined as follows.

Definition 1 (DISTINCTG
k,L) Let k parties be placed on a network G. Let each party Pi (0 ≤ i ≤ k − 1) have

an integer xi ∈ {0, . . . , L − 1} (k ≤ L). The goal is to decide whether xi is not equal to x j for i ! j. At
termination, each party knows a one-bit result.

The main theorem of this section gives almost tight bounds of the bounded-error quantum communication
complexity for the distinctness problem on a ring-shaped network.

Theorem 9 The quantum communication complexity of DISTINCTring
k,L for L = k+Ω(k) in the bounded error

setting is summarized as follows:

• if L ≤ k(log k)2, O(k
√

L) and Ω(k
√

k)⊆Ω(k
√

L
log k).

• if L > k(log k)2, O(k(
√

k log k + log log L)) and Ω(k(
√

k + log log L))

The theorem implies that our bounds are tight up to a log factor. In particular, they are optimal Θ(k
√

k) up
to a constant factor for L ∈ O(k). The theorem is directly obtained from the lemmas in the next subsections.
Hereafter, we deal with only bounded-error computation.

4.1 Lower Bound
To get a lower bound, we will prove a lower bound of the quantum communication complexity for a certain
distributed computing problem by applying Corollary 6, and then reduce the problem to DISTINCTring

k,L .

Lemma 10 The quantum communication complexity of DISTINCTring
k,L is Ω(k(

√
k + log log L)), for L =

k + Ω(k).

Proof We will reduce the following problem DISJring
k−2*ck++2,*ck+ to DISTINCTring

k,L : when party PA is dia-
metrically opposite PC on a (k − 2(*ck+ − 1))-party ring for any positive constant c (≤ 1/4) (we assume
here 2|(k − 2*ck+) for simplicity, but this assumption is not essential), and *ck+-bit strings x and y are given
to PA and PC , respectively, the goal is to compute function DISJ*ck+(x, y) =

∧*ck+
i=1 xiyi (see Fig. 2). Prob-

lem DISJring
k−2*ck++2,*ck+ has the total communication complexity over all links of Ω(k

√
k) by Corollary 7 with

n = *ck+, w = 2, s = (k − 2(*ck+ − 1))/2 = O(k), l0(g) = 1, and l1(g) = 0.
We now reduce DISJring

k−2*ck++2,*ck+ to DISTINCTring
k,L for any L ≥ k + *ck+. We first partition the k-party

ring of DISTINCTring
k,L into four connected segments A, B, C and D of size *ck+, (k − 2*ck+)/2, *ck+ and

(k − 2*ck+)/2, respectively, where segment A is diametrically opposite C. Let I1 = {0, 1, . . . , *ck+ − 1},
I2 = {*ck+, . . . , 3*ck+ − 1} and I3 = {3*ck+, . . . , L − 1}. Next we construct an instance of DISTINCTring

k,L from
any instance of DISJring

k−2*ck++2,*ck+ as follows: (1) the ith party of A (C) has (i − 1) ∈ I1 as input if the ith bit
of input to PA (resp. PC) of DISJring

k−2*ck++2,*ck+ is 1 for i = 1, . . . , *ck+, otherwise every party in A and C is
given any distinct value in I2, (2) every party in B and D is given any distinct value in I3. It is not hard to see
that DISTINCTring

k,L is true if and only if there is no i such that the ith party of A has the same input as the ith
party of C. Thus, DISJring

k−2*ck++2,ck can be solved if PA and PC simulate segments A and C, respectively, for

7

PA PC

 ckk
"

2

 ckk
"

2

Figure 2: Problem DISJring.

the above instance of DISTINCTring
k,L . By setting c to an arbitrary small positive constant, the lemma holds

for all L = k + Ω(k).
In the case where L = 2kω(1) , we will reduce the following problem NEQring

k,*log L+−1 to DISTINCTring
k,L :

when party PA is diametrically opposite PC on a k-party ring (we assume again 2|k for simplicity, but this
assumption is not essential), and (*log L+ − 1)-bit strings x and y are given to PA and PC , respectively, the
goal is to decide whether x does not equal y, i.e., to compute NEQ*log L+−1 =

∨*log L+−1
i=1 (xi ⊕ yi). We apply

Corollary 6 to NEQring
k,*log L+−1 with n = *log L+ − 1, w = 2, s = O(k) and Q1/3(NEQ*log L+−1)= Ω(log log L).

(This is because NEQ has the same complexity as EQ in the bounded error case, and Q1/3(EQn) = Ω(log n)
can be derived by the combination of the following two facts: (1) D(EQn) = Ω(n) by the rank lower bound
technique [13], and (2) for any f , Q1/3(f) > Ω(log(D(f)) [12].) NEQring

k,*log L+−1 has the total communication
complexity over all links ofΩ(k(log log L− log min{O(k),O(log L)})) = Ω(k log log L) when L = 2kω(1) . Thus,
DISTINCTring

k,L has quantum communication complexity Ω(k log log L).
For the reduction, we construct an instance of DISTINCTring

k,L from any instance of NEQring
k,*log L+−1 as fol-

lows. We first partition the k-party ring of DISTINCTring
k,L into four connected segments A, B, C and D of size

1, (k−2)/2, 1 and (k−2)/2, respectively, where segment A is diametrically opposite C. We then set the most
significant bit (MSB) of the input of DISTINCTring

k,L given to each party in segments A and C to 1, while we
set the MSBs of the inputs to the other parties to 0. The remaining (*log L+ − 1) bits of the input to the party
in segment A (segment C) are set to the input values of NEQring

k,*log L+−1 given to PA (resp. PC). The remaining
(*log L+ − 1) bits of the input to the other parties are set to distinct values. !

4.2 Upper Bounds
To show the optimality of our lower bound, we show almost matching upper bounds.

Lemma 11 The quantum communication complexity of DISTINCTring
k,L is O(k(

√
k log k + log log L)).

Proof
We consider the following search problem: is there any party Pi such that, for some j (! i), party Pj has

the same input as party Pi? Given an oracle that, for input i, answers 1 if there is a party Pj(! Pi) that has
the same input as party Pi and otherwise answers 0, we can solve the search problem with O(

√
k) queries to

the oracle by Grover’s quantum search algorithm in [9]. Let party P0 be distinguished, and she executes the

8

search algorithm on behalf of all the parties. The oracle is simulated in a distributed way by the k parties as
follows.

The simulation for input i consists of two phases. The purpose of the first phase is for P0 to get the
information of xi. If i ! 0, party P0 first prepares a (*log k++ *log L+)-qubit message |i〉|0*log L+〉; otherwise P0
prepares message |i〉|x0〉. Party P0 then sends it to adjacent party P1. Every party Pj (j > 0) except Pi simply
passes the received message to adjacent party Pj+1 (mod k); party Pi changes message |i〉|0*log L+〉 to |i〉|xi〉
before sending it to adjacent party Pi+1 (mod k). The purpose of the second phase is to check whether string xi
is identical to one of the k − 1 strings {x0, x2, . . . , xk−1} \ {xi}. If i ! 0, party P0 prepares (*log L+ + *log k+)-
qubit message |xi〉|0*log k+〉; otherwise it prepares message |xi〉|0*log k+−11〉. Notice that the second register is
used to count the number of parties that have values identical to xi. Party P0 then sends it to adjacent party
P1. For j > 0, Pj just passes the received message to adjacent party Pj+1 (mod k) if x j ! xi; otherwise party
Pj increments the counter, i.e., the contents of the last *log k+ qubits, in the message, and sends it to adjacent
party Pj+1 (mod k). When the message arrives at P0, the counter has value of at least two if and only if there
are at least two parties that have values identical to xi. Party P0 then sets the content of a fresh qubit to 1 if
the value of the counter is at least two; otherwise, P0 sets it to 0. The content of the fresh qubit is the answer
of the oracle. Finally, every computation (except the last step) and communication performed in the first and
second phases is inverted to disentangle all work qubits including the message qubits.

The first and the second phases including their inversions have the communication complexity of
O(k log(kL)), implying that one query needs O(k log(kL)).

By combining Grover’s search algorithm with this distributed oracle, O(k
√

k log(kL))-qubit communi-
cation is sufficient to find any party Pi such that there exists party Pj (j ! i) that has the same input as party
Pi. If such a party is found, the answer to DISTINCTring

k,L is false; otherwise the answer is true. (To inform
every party of the answer, a one-bit message needs to be passed around the ring, which does not change the
order of complexity.) This complexity is tight up to a log multiplicative factor when L is polynomial in k.
For larger L, however, it is not tight. In what follows, we will show more efficient algorithm for larger L by
adding a preprocess before running the above algorithm.

The idea is to map *log L+-bit inputs to 3 log k-bit strings by using universal hashing (see [14] or A) and
classical public randomness, and then apply the above algorithm of complexity O(k

√
k log(kL)) with the

3 log k-bit strings as input.
Suppose that every party shares classical public coins, By using the public coins, every party selects

a common hash function f : {0, . . . , L − 1} 2→ {0, . . . , k3 − 1} from the family of O(L2) hash functions.
Every party sets its new input to the 3 log k-bit string, and runs the O(k

√
k log(kL)) algorithm for the

new input, yielding complexity O(k
√

k log k). By Lemma 2 with input size k*log L+, O(k log(k log L))-bit
classical communication is sufficient to realize public coins. Thus, the total communication complexity is
O(k log(k log L) + k

√
k log k) = O(k(

√
k log k + log log L).

The correctness of this algorithm is proved as follows. When there are a pair of parties that share a
common value, the step of applying Grover’s search obviously finds one of the parties with bounded error. If
there is no such pair, the probability that a certain pair of parties share a common value of the hash function
is at most 1/k3 × k(k − 1)/2 ≤ 1/(2k). Thus, in this case, the algorithm also guarantees bounded error.

!

In the case of L < k(log k)2, we can obtain a better bound, which is optimal for L = O(k).

Lemma 12 The quantum communication complexity of DISTINCTring
k,L is O(k

√
L).

Proof We consider the following search problem:

9

Let k parties be placed on a ring, and let each party Pi (0 ≤ i ≤ k−1) have an integer xi ∈ {0, . . . , L−1} (k ≤
L). Is there any element x ∈ {0, . . . , L − 1} such that at least two parties have x?

We employ the protocol due to Aaronson and Ambainis [1] for the two-party disjointness function, which
has O(

√
L) communication complexity for 2L-bit input. In their protocol, Alice and Bob collaborate to

recursively execute the amplitude amplification algorithm in a distributed way. By using their technique, we
can solve the search problem as follows.

Let party P0, say Alice, be distinguished, and she executes the recursive amplitude amplification algo-
rithm due to Aaronson and Ambainis on behalf of all parties. Suppose that there is at most one solution, i.e.,
there is at most one element x ∈ {0, . . . , L − 1} such that at least two parties have x as inputs.

We consider the following algorithmA, which takes S ⊆ {0, . . . , L − 1} as an input and finds an element
x ∈ S such that at least two parties have x. Alice divides the search space S into |S |1/5 subspaces. She picks
up a subspace S i (0 ≤ i ≤ |S |1/5−1) uniformly at random, and announces the index of the chosen subspace to
all other parties. She then recursively searches the subspace by callingA(S i). She applies Theorem 4 to this
algorithm m times for the smallest integer m such that 2m+ 1 ≥ |S |1/11. At the bottom level of the recursion,
where the size of the search space is a constant, Alice solves the problem classically. As we will show in
the next paragraph, this solves the problem with probability Ω(|S |−1/11). In other words, A({0, . . . , L − 1})
solves DISTINCTring

k,L with probability Ω(L−1/11). Thus, by applying Theorem 4 toA({0, . . . , L− 1}) O(L1/22)
times, the success probability is boosted to Ω(1). The pseudo-code is shown in Fig. 3, which consists of a
main algorithm and several sub-algorithms.

We now show the reason why the success probability of A(S) is Ω(|S |−1/11). Let Pr(t) be the success
probability of this algorithm for search space of size t. Note that the success probability before applying
quantum amplitude amplification in the algorithm is t−1/5Pr(t4/5). By the property of quantum amplitude
amplification, Pr(t) = (sin((2m + 1)θa))2 for m = Θ(t1/11) and (sin θa)2 = a = t−1/5Pr(t4/5). This yields
Pr(t) = Ω(t−1/11) by using (sin((2m + 1)θa))2 > ((2m + 1)

√
a)2(1 − ((2m + 1)

√
a)2/3) (see also [1]).

Our algorithm performs these operations in a superposition, and maintains the state of the whole system
∑

I

αI |I〉⊗k |zI〉|garbage〉,

where I means the index of the chosen subspace, which is possessed by every party (thus, this part is a
k-tensor product), and zI is the content of register Z possessed by Alice, in which the search result for the
corresponding space is stored at the bottom level.

To realize Fχ, no communication is needed, since Alice has register Z and already knows the search result
for each subspace. To realize F0, O(k) bit communication is sufficient; Alice sends one bit message |0〉, and
every party including Alice, upon receiving the message, computes the OR of the contents of the received
message and all his quantum registers at the current or deeper recursion levels, and sends the one-bit result
to the next party (if he/she is not Alice). At each level of the recursion, Alice announces the index of the
chosen subspace to all other parties. For this, O(k · log |S |1/5)-qubit communication is sufficient by sending
a message of *log |S |1/5+ bits around the ring. At the bottom level of the recursion, they communicate with
each other to solve the search problem over a constant-sized search space {i, i+1, . . . , i+ j} for some constant
j; Alice finally sets the content of register Z to the search result. This can be solved as follows. For each
value in {i, i + 1, . . . , i + j}, a message consisting of two parts of log j bits and 2 bits, respectively, is sent
around the ring. The first part specifies the value in {i, i + 1, . . . , i + j} to be checked. The second part is a
counter that is incremented up to two by the parties having the value specified by the first part (if the counter
already has value of two, it is never incremented). If this computation is done in a superposition over all
constant-sized subspaces, it may leave some garbage at some parties; but this garbage need not be removed,
since amplitude amplification (−AF0A−1Fχ)mA|0〉 already includes the inverting operation of A. Hence,

10

this needs the communication of O(k) qubits. Since amplitude amplification performs A and A−1 (2m + 1)
times, and F0 and Fχ m times for each, we obtain a recurrence with respect to the number of qubits (C(L))
to be communicated:

C(L) ≤ (2mL + 1)
(
C
(
L4/5
)
+ k
⌈
log
(
L1/5
)⌉)
+ mL · O(k),

where mL is the smallest integer such that 2mL + 1 ≥ L1/11. This resolves to C(L) = O(k · L5/11). Since the
success probability is Ω(L−1/11), amplifying O(L1/22) times boosts it to Ω(1). Thus the total communication
complexity is O(k

√
L).

If there can be two or more solutions, we can reduce this case to the unique solution case as in [1]. The
complexity is still O(k

√
L).

!

References
[1] S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Proceedings of 44th Annual

IEEE Symposium on Foundations of Computer Science, pages 200–209, 2003. (Journal version The-
ory of Computing, 1:47–79, 2005.)

[2] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential separation of quantum and classical one-
way communication complexity. In Proceedings of 36th Annual ACM Symposium on Theory of Com-
puting, pages 128–137, 2004.

[3] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching. Fortschritte Der
Physik, 46(4-5):493–505, 1998.

[4] G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In
S. J. L. Jr. and H. E. Brandt, editors, Quantum Computation and Quantum Information: A Millenium
Volume, volume 305 of AMS Contemporary Math. Series, pages 53–74. 2003.

[5] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation.
In Proceedings of 30th Annual ACM Symposium on Theory of Computing, pages 63–68. 1998.

[6] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Physical Review Letters,
87(16):167902, 2001.

[7] P. Frankl and V. Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259–286, 1987.

[8] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz and R. de Wolf. Exponential separations for one-way
quantum communication complexity, with applications to cryptography. In Proceedings of 39th An-
nual ACM Symposium on Theory of Computing, pages 516–525, 2007.

[9] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th
Annual ACM Symposium on Theory of Computing, pages 212–219, 1996. In Proceedings of 28th
Annual ACM Symposium on Theory of Computing, pages 212–219, 1996.

[10] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity of set intersec-
tion. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

11

[11] H. Klauck. On quantum and approximate privacy. Theory of Computing Systems, 37:221–246, 2004.

[12] I. Kremer. Quantum communication. Master’s thesis, Hebrew University, Computer Science Depart-
ment, 1995.

[13] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[14] C. E. Leiserson, R. L. Rivest, C. Stein and T. H. Cormen. Introduction to Algorithms. MIT Press,
2001.

[15] I. Newman. Private vs. common random bits in communication complexity. Information Processing
Letters, 39:67–71, 1991.

[16] R. Raz. Exponential separation of quantum and classical communication complexity. In Proceedings
of 31st Annual ACM Symposium on Theory of Computing, pages 358–367, 1999.

[17] A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya Mathemat-
ics, 67(1):145–159, 2003.

[18] P. Tiwari. Lower Bounds on Communication Complexity in Distributed Computer Networks. Journal
of the ACM, 34(4):921–938, 1987.

[19] A. C.-C. Yao. Some complexity questions related to distributed computing. In Proceedings of 11th
Annual ACM Symposium on Theory of Computing, pages 209–213, 1979.

[20] A. C.-C. Yao. Quantum circuit complexity. In Proceedings of 34th Annual IEEE Symposium on
Foundations of Computer Science, pages 352–361, 1993.

A Universal Hashing
For prime p and positive integer m such that p > m, define the hash function ha,b that maps U = {0, . . . , p−1}
to {0, . . . ,m − 1} as follows: For any a ∈ Z∗p := {1, 2, . . . , p − 1} and any b ∈ Zp := {0, 1, 2, . . . , p − 1},

ha,b(k) := ((ak + b) mod p) mod m.

Then, the class Hp,m := {ha,b : a ∈ Z∗p and b ∈ Zp} of hash functions ha,b is universal. In other words, for
each pair of distinct keys k, l ∈ U, the number of hash functions ha,b ∈ Hp,m for which ha,b(k) = ha,b(l) is at
most |H|/m.

B Proof of Theorem 8.
Proof We first partition network G into (s + 1) layers as in the case of Lemma 5. Suppose that P, the best
quantum protocol between PA and PB on network G, computes f (x, y) with give-up probability at most ε.

We then construct a zero-error quantum protocol with classical public coins between two parties, P′A and
P′B, that are directly connected to each other by simulating protocol P as in the proof of Lemma 5. The
obtained protocol between P′A and P′B computes f with give-up probability at most ε and with expected
communication complexity (1/s

∑
i qi*logwi+). To guarantee the worst case communication complexity,

we modify this protocol so that if the amount of communication exceeds 1/δ1 times (1/s
∑

i qi*logwi+) for

12

0 < δ1 < 1, it gives up. The probability of this event is at most δ1 by Markov’s inequality. Thus, the
modified protocol gives up with probability at most ε + δ1. Hence, we have obtained a zero-error quantum
protocol with classical public coins, whose complexity is 1/(sδ1)

∑
i qi *logwi+ ≤ *logw+/(sδ1) · ∑i qi. The

last equality is due to wi ≤ w. This implies that Qpub
0,ε+δ1

(f) ≤ *logw+/(sδ1) ·∑i qi. Amount
∑

i qi is the total
number of qubits communicated by protocol P, QG

0,ε(f), which is lower-bounded by sδ1Qpub
0,ε+δ1

(f)/*logw+.
By applying Lemma 3 to Qpub

0,ε+δ1
(f), we have

QG
0,ε(f) ≥ sδ1(Q0,ε+δ1+δ2 (f) − *log n + 2 log 1/δ2+)/*logw+.

There is a simpler way of deciding the boundary between P′A’s part and P′B’s part: P′A randomly chooses
one layer-boundary out of the s layer-boundaries and informs P′B of the chosen layer-boundary by sending
a *log s+-bit message. By an argument similar to the one stated above, Q0,ε+δ3 (f) ≤ 1/(sδ3)

∑
i qi *logwi+ +

*log s+ ≤ *logw+/(sδ3) · ∑i qi + *log s+. This implies that QG
0,ε(f) is lower-bounded by sδ3(Q0,ε+δ3 (f) −

*log s+)/*logw+. !

13

main()
{

return(Ampli f y (O(L1/22),A({0, . . . , L − 1}))
}

A(S)
{

if (|S | is a constant)
{

Find x ∈ S such that at least two parties have x by classically communicating with each other, and
return the result.

}
else
{

for (i = 0 to |S |1/5 − 1)
{

S i := {S i·|S |4/5 , . . . , S (i+1)·|S |4/5−1} // Divide S into |S |1/5 subsets.
}
m := (the smallest integer such that 2m + 1 ≥ |S |1/11.)
return (Ampli f y (m,Asub(S)))

}
}

Asub(S)
{

Pick up i (0 ≤ i < |S |1/5) at random, and announce it to all other parties.
return(A(S i))

}

Ampli f y(k, A)
{

Amplify algorithm A k times, and return the result.
}

Figure 3: Pseudo-code of the algorithm for DISTINCTring
k,L

14

