Publications


Journal Papers

  1. Kubota S, Sasaki C, Kikuta S, Yoshida J, Ito S, Gomi H, Oya T, Seki K (2024) Modulation of somatosensory signal transmission in the primate cuneate nucleus during voluntary hand movement. Cell Reports:113884.
  2. Ito S, Gomi H (2024) Modulations of stretch reflex by altering visuomotor contexts. Front Hum Neurosci 18:1336629.
  3. Cataldo A, Crivelli D, Bottini G, Gomi H, Haggard P (2024) Active self-touch restores bodily proprioceptive spatial awareness following disruption by ‘rubber hand illusion’. Proc R Soc B 291:20231753.
  4. Nakamura D, Gomi H (2023) Decoding self-motion from visual image sequence predicts distinctive features of reflexive motor responses to visual motion. Neural Networks 162:516–530.
  5. Abekawa N, Doya K, Gomi H (2022) Body and visual instabilities functionally modulate implicit reaching corrections. iScience:105751.
  6. Kong G, Cataldo A, Nitu M, Dupin L, Gomi H, Haggard P (2022) Interhemispheric communication during haptic self-perception. Proc R Soc B 289:20221977.
  7. Ito S, Kimura T, Gomi H (2022) Attribution of sensory prediction error to perception of muscle fatigue. Sci Rep 12:16708.
  8. Arslanova I, Takamuku S, Gomi H, Haggard P (2022) Multidigit tactile perception I: motion integration benefits for tactile trajectories presented bimanually. Journal of Neurophysiology 128:418–433.
  9. De Havas J, Ito S, Bestmann S, Gomi H (2022) Neural dynamics of illusory tactile pulling sensations. iScience 25:105018.
  10. Abekawa N, Ito S, Gomi H (2022) Gaze-specific motor memories for hand-reaching. Current Biology:S0960982222007011.
  11. Cataldo A, Dupin L, Dempsey-Jones H, Gomi H, Haggard P. (2022) Interplay of tactile and motor information in constructing spatial self-perception. Current Biology S0960982222001099.
  12. De Havas J, Haggard P, Gomi H, Bestmann S, Ikegaya Y, Hagura N (2022) Evidence that endpoint feedback facilitates intermanual transfer of visuomotor force learning by a cognitive strategy. Journal of Neurophysiology 127:16-26.
  13. Takamuku S, Gomi H. (2021) Vision-based speedometer regulates human walking. iScience 24:103390.
  14. Friston K, Moran RJ, Nagai Y, Taniguchi T, Gomi H, Tenenbaum J (2021) World model learning and inference. Neural Networks 144:573–590.
  15. Macpherson T, Matsumoto M, Gomi H, Morimoto J, Uchibe E, Hikida T (2021) Parallel and hierarchical neural mechanisms for adaptive and predictive behavioral control. Neural Networks 144:507–521.
  16. Abekawa N, Gomi H, Diedrichsen J (2021) Gaze control during reaching is flexibly modulated to optimize task outcome. Journal of Neurophysiology 126:816-826.
  17. Cataldo A, Dupin L, Gomi H, Haggard P (2021) Sensorimotor signals underlying space perception: an investigation based on self-touch. Neuropsychologia 151:107729.
  18. Takamuku S, Ohta H, Kanai C, Hamilton AF de C, Gomi H (2021) Seeing motion of controlled object improves grip timing in adults with autism spectrum condition: evidence for use of inverse dynamics in motor control. Experimental Brain Research 239:1047-1059.
  19. Arslanova I, Wang K, Gomi H, Haggard P (2020) Somatosensory evoked potentials that index lateral inhibition are modulated according to the mode of perceptual processing: comparing or combining multi-digit tactile motion. Cognitive Neuroscience:1-14.
  20. De Havas J, Ito S, Gomi H (2020) On Stopping Voluntary Muscle Relaxations and Contractions: Evidence for Shared Control Mechanisms and Muscle State-Specific Active Breaking. The Journal of Neuroscience 40:6035-6048.
  21. Ito S, Gomi H (2020) Visually-updated hand state estimates modulate the proprioceptive reflex independently of motor task requirements Cressman E, Gold JI, Cressman E, eds. eLife 9:e52380.
  22. Takamuku S, Gomi H (2019) Better grip force control by attending to the controlled object: Evidence for direct force estimation from visual motion. Scientific Reports 9:13114.
  23. Ueda H, Abekawa N, Ito S, Gomi H (2019) Distinct temporal developments of visual motion and position representations for multi-stream visuomotor coordination. Scientific Reports 9 Available at: http://www.nature.com/articles/s41598-019-48535-0
  24. Takamuku S, Forbes PAG, Hamilton AFC, Gomi H (2018) Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Res 11:1062-1075.
  25. De Havas J, Ito S, Haggard P, Gomi H (2018) Low gain servo control during the Kohnstamm phenomenon reveals dissociation between low-level control mechanisms for involuntary versus voluntary arm movements. Front Behav Neurosci 12 Available at: https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00113/full
  26. Abekawa N, Ferre ER, Gallagher M, Gomi H, Haggard P (2018) Disentangling the visual, motor and representational effects of vestibular input. Cortex 104:46?57.
  27. Ueda H, Abekawa N, Gomi H (2018) The faster you decide, the more accurate localization is possible: Position representation of "curveball illusion" in perception and eye movements D. L. Ringach, ed. PLOS ONE 13:e0201610.
  28. Amemiya T, Beck B, Walsh V, Gomi H, Haggard P (2017) Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Scientific Reports 7:40937.
  29. De Havas J, Gomi H, Haggard P (2017) Experimental investigations of control principles of involuntary movement: a comprehensive review of the Kohnstamm phenomenon. Experimental Brain Research, 2017 Jul;235(7):1953-1997. doi: 10.1007/s00221-017-4950-3
  30. Sakurada T, Ito K, Gomi H (2016) Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates. Eur J Neurosci 43:120-130.
  31. De Havas J, Ghosh A, Gomi H, Haggard P (2016) Voluntary motor commands reveal awareness and control of involuntary movement. Cognition 155:155?167.
  32. Amemiya T, Gomi H (2016) Active Manual Movement Improves Directional Perception of Illusory Force. IEEE Transactions on Haptics 9:465-473.
  33. Abekawa N, Gomi H (2015) Online gain update for manual following response accompanied by gaze shift during arm reaching. Journal of neurophysiology 113:1206-1216.
  34. Kuehn E, De Havas J, Silkoset E, Gomi H, Haggard P (2015) On the bimanual integration of proprioceptive information. Experimental brain research 233:1273-1288.
  35. De Havas J, Ghosh A, Gomi H, Haggard P (2015) Sensorimotor organization of a sustained involuntary movement. Front Behav Neurosci 9:185.
  36. Takamuku S, Gomi H (2015) What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor. Proceedings Biological sciences / The Royal Society 282.
  37. Abekawa N, Inui T, Gomi H (2014) Eye-hand coordination in on-line visuomotor adjustments. Neuroreport 25:441-445.
  38. Amemiya T, Gomi H (2014) Distinct Pseudo-Attraction Force Sensation by a Thumb-Sized Vibrator that Oscillates Asymmetrically. In: Haptics: Neuroscience, Devices, Modeling, and Applications, vol. 8619 (Auvray, M., ed), pp 88-95: Springer
  39. Gomi H, Sakurada T, Fukui T (2014) Lack of motor prediction, rather than perceptual conflict, evokes an odd sensation upon stepping onto a stopped escalator. Front Behav Neurosci 8:77.
  40. Gomi H, Abekawa N, Shimojo S (2013) The hand sees visual periphery better than the eye: motor-dependent visual motion analyses. The Journal of Neuroscience 33:16502-16509.
  41. Mochida T, Kimura T, Hiroya S, Kitagawa N, Gomi H, Kondo T (2013) Speech misperception: speaking and seeing interfere differently with hearing. PloS one 8:e68619.
  42. Amemiya T, Gomi H (2013) Directional Torque Perception with Brief and Asymmetric Angular Momentum Change. IEEE Transactions on Haptics 6:370-375.
  43. Saijo N, Gomi H (2012) Effect of visuomotor-map uncertainty on visuomotor adaptation. J Neurophysiol 107:1576-1585.
  44. Fukui T, Gomi H (2012) Action evaluation is modulated dominantly by internal sensorimotor information and partly by noncausal external cue. PLoS ONE 7:e34985.
  45. Fuentes CT, Gomi H, Haggard P (2012) Temporal features of human tendon vibration illusions. European Journal of Neuroscience 36:3709-3717.
  46. Kadota K, Gomi H (2010) Implicit visuomotor processing for quick online reactions is robust against aging. J Neurosci 30:205-209.
  47. Saijo, N., and Gomi, H. (2010). Multiple motor learning strategies in visuomotor rotation. PLoS ONE 5, e9399.
  48. Abekawa N, Gomi H (2010) Spatial coincidence of intentional actions modulates an implicit visuomotor control. J Neurophysiol 103:2717-2727.
  49. Mochida T, Gomi H, Kashino M (2010) Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives. PLoS One 5:e13866.
  50. Amano K, Kimura T, Nishida S, Takeda T, Gomi H (2009) Close similarity between spatiotemporal frequency tunings of human cortical responses and involuntary manual following responses to visual motion. J Neurophysiol 101:888-897.
  51. Fukui T, Kimura T, Kadota K, Shimojo S, Gomi H (2009) Odd Sensation Induced by Moving-Phantom which Triggers Subconscious Motor Program. PLoS ONE 4:e5782.
  52. Longo MR, Kammers MPM, Gomi H, Tsakiris M, Haggard P (2009) Contraction of body representation induced by proprioceptive conflict. Current Biology 19:R727-728.
  53. Kimura T, Gomi H (2009) Temporal development of anticipatory reflex modulation to dynamical interactions during arm movement. J Neurophysiol 102:2220-2231.
  54. Gomi H (2008) Implicit online corrections of reaching movements. Current Opinion In Neurobiology 18: 558-564.
  55. Kim K, Gomi H (2007) Model-based investigation of control and dynamics in human articulatory motion. Journal of System Design and Dynamics 1:558-569.
  56. Ito T, Gomi H (2007) Cutaneous mechanoreceptors contribute to the generation of a cortical reflex in speech. Neuroreport 18:907-910.
  57. Gomi H, Nozoe J, Dang J, Honda K (2006) A physiologically based model of perioral dynamics for various lip deformations in speech articulation. In: Speech Production: Models, Phonetic Processes, and Techniques (Harrington J, Tabain M, eds), pp 119-134: Psychology Press.
  58. Deng M, Saijo N, Gomi H, Inoue A (2006) A Robust Real Time Method for Estimating Human Multijoint Arm Viscoelasticity. International Journal of Innovative Computing, Information & Control 2:705-721.
  59. Kimura T, Haggard P, Gomi H (2006) Transcranial magnetic stimulation over sensorimotor cortex disrupts anticipatory reflex gain modulation for skilled action. J Neurosci 26:9272-9281.
  60. Gomi H, Abekawa N, Nishida S (2006) Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. J Neurosci 26:5301-5308.
  61. Saijo N, Murakami I, Nishida S, Gomi H (2005) Large-field visual motion directly induces an involuntary rapid manual following response. J Neurosci 25:4941-4951.
  62. Ito T, Kimura T, Gomi H (2005) The motor cortex is involved in reflexive compensatory adjustment of speech articulation. Neuroreport 16:1791-1794.
  63. Ito T, Murano EZ, Gomi H (2004) Fast force-generation dynamics of human articulatory muscles. J Appl Physiol 96:2318-2324; discussion 2317.
  64. Ito T, Gomi H, Honda M (2004) Dynamical simulation of speech cooperative articulation by muscle linkages. Biol Cybern 91:275-282.
  65. Gomi, H., Ito, T., Murano, E. Z., & Honda, M. (2002). Compensatory articulation during bilabial fricative production by regulating muscle stiffness. Journal of Phonetics. 30(3), 261‐279
  66. Ito, T, Gomi, H., Honda, M. (2003) Articulatory coordination by muscle-linkage during bilabial utterance, Acoust. Sci. & Tech.Accoustical letter, 24(6):391-393
  67. Deng, M., Inoue, A., Gomi, H., & Hirashima, Y. (2003). Recursive filter design for estimating time varying multijoint human arm viscoelasticity. International Journal of Computers, Systems and Signals, 4(2).
  68. Takemura, A., Inoue, Y., Gomi, H., Kawato, M., & Kawano, K. (2001). Change in neuronal firing patterns in the process of motor command generation for the ocular following responses. Jounal of Neurophysiology, 86, 1750-1763.
  69. Osu, R., & Gomi, H. (1999). Multi-joint muscle regulation mechanisms examined by measured human-arm stiffness and EMG signals. J. Neurophysiol., 81, 1458-1468.
  70. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., & Kawato, M. (1999). Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol., 81, 2140-2155.
  71. Gomi, H., Shidara, M., Takemura, A., Inoue, Y., Kawano, K., & Kawato, M. (1998). Temporal firing patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. simple spikes. Journal of Neurophysiology, 80, 818-831.
  72. Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., & Kawato, M. (1998). Temporal firing patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. complex spikes. Journal of Neurophysiology, 80, 832-848.
  73. Gomi, H., & Osu, R. (1998). Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. The Journal of Neuroscience. 18(21), 8965-8978
  74. Gomi, H., & Kawato, M. (1997). Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biological Cybernetics, 76, 163-171.
  75. Miyamoto, H., Schaal, S., Gandolfo, F., Gomi, H., Koike, Y., Osu, R., Nakano, E., Wada, Y., & Kawato, M. (1996). A kendama learning robot based on bi-directional theory. Neural Networks, 9(8), 1281-1302.
  76. Kawano K, Shidara M, Takemura A, Inoue Y, Gomi H, Kawato M (1996) Inverse-dynamics representation of eye movements by cerebellar Purkinje cell activity during short-latency ocular-following responses. Ann N Y Acad Sci 781:314-321.
  77. Gomi, H., & Kawato, M. (1996). Equilibrium-point control hypothesis examined by measured arm-stiffness during multi-joint movement. Science, 272, 117-120.
  78. Gomi, H., & Kawato, M. (1993). Recognition of manipulated objects by motor learning with modular architecture networks. Neural Networks, 6(4), 485-497.
  79. Gomi, H., & Kawato, M. (1993). Neural network control for a closed-loop system using feedback-error-learning. Neural Networks, 6(7), 933-946.
  80. Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse dynamics model eye movement control by Purkinje cells in the cerebellum. Nature,365(2),50-52.
  81. Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR Learning Models. Trends in Neurosciences, 15(11), 445-453.
  82. Kawato, M., & Gomi, H. (1992). A computational model of four regions of the cerebellum based on feedback-error learning. Biological Cybernetics, 68/2. 95-103
  83. Gomi, H., & Kawato, M. (1992). Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics, 68/2, 105-114.